Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
arxiv; 2024.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2403.16233v1

RESUMO

The timely detection of disease outbreaks through reliable early warning signals (EWSs) is indispensable for effective public health mitigation strategies. Nevertheless, the intricate dynamics of real-world disease spread, often influenced by diverse sources of noise and limited data in the early stages of outbreaks, pose a significant challenge in developing reliable EWSs, as the performance of existing indicators varies with extrinsic and intrinsic noises. Here, we address the challenge of modeling disease when the measurements are corrupted by additive white noise, multiplicative environmental noise, and demographic noise into a standard epidemic mathematical model. To navigate the complexities introduced by these noise sources, we employ a deep learning algorithm that provides EWS in infectious disease outbreak by training on noise-induced disease-spreading models. The indicator's effectiveness is demonstrated through its application to real-world COVID-19 cases in Edmonton and simulated time series derived from diverse disease spread models affected by noise. Notably, the indicator captures an impending transition in a time series of disease outbreaks and outperforms existing indicators. This study contributes to advancing early warning capabilities by addressing the intricate dynamics inherent in real-world disease spread, presenting a promising avenue for enhancing public health preparedness and response efforts.


Assuntos
COVID-19 , Deficiências da Aprendizagem , Doenças Transmissíveis
2.
arxiv; 2023.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2304.09931v2

RESUMO

Efficient coverage for newly developed vaccines requires knowing which groups of individuals will accept the vaccine immediately and which will take longer to accept or never accept. Of those who may eventually accept the vaccine, there are two main types: success-based learners, basing their decisions on others' satisfaction, and myopic rationalists, attending to their own immediate perceived benefit. We used COVID-19 vaccination data to fit a mechanistic model capturing the distinct effects of the two types on the vaccination progress. We estimated that 47 percent of Americans behaved as myopic rationalist with a high variations across the jurisdictions, from 31 percent in Mississippi to 76 percent in Vermont. The proportion was correlated with the vaccination coverage, proportion of votes in favor of Democrats in 2020 presidential election, and education score.


Assuntos
COVID-19
3.
arxiv; 2023.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2302.04829v1

RESUMO

Classical epidemiological models assume homogeneous populations. There have been important extensions to model heterogeneous populations, when the identity of the sub-populations is known, such as age group or geographical location. Here, we propose two new methods to model the number of people infected with COVID-19 over time, each as a linear combination of latent sub-populations -- i.e., when we do not know which person is in which sub-population, and the only available observations are the aggregates across all sub-populations. Method #1 is a dictionary-based approach, which begins with a large number of pre-defined sub-population models (each with its own starting time, shape, etc), then determines the (positive) weight of small (learned) number of sub-populations. Method #2 is a mixture-of-$M$ fittable curves, where $M$, the number of sub-populations to use, is given by the user. Both methods are compatible with any parametric model; here we demonstrate their use with first (a)~Gaussian curves and then (b)~SIR trajectories. We empirically show the performance of the proposed methods, first in (i) modeling the observed data and then in (ii) forecasting the number of infected people 1 to 4 weeks in advance. Across 187 countries, we show that the dictionary approach had the lowest mean absolute percentage error and also the lowest variance when compared with classical SIR models and moreover, it was a strong baseline that outperforms many of the models developed for COVID-19 forecasting.


Assuntos
COVID-19 , Alucinações
4.
arxiv; 2022.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2201.05930v1

RESUMO

Understanding the joint impact of vaccination and non-pharmaceutical interventions on COVID-19 development is important for making public health decisions that control the pandemic. Recently, we created a method in forecasting the daily number of confirmed cases of infectious diseases by combining a mechanistic ordinary differential equation (ODE) model for infectious classes and a generalized boosting machine learning model (GBM) for predicting how public health policies and mobility data affect the transmission rate in the ODE model [WWR+]. In this paper, we extend the method to the post-vaccination period, accordingly obtain a retrospective forecast of COVID-19 daily confirmed cases in the US, and identify the relative influence of the policies used as the predictor variables. In particular, our ODE model contains both partially and fully vaccinated compartments and accounts for the breakthrough cases, that is, vaccinated individuals can still get infected. Our results indicate that the inclusion of data on non-pharmaceutical interventions can significantly improve the accuracy of the predictions. With the use of policy data, the model predicts the number of daily infected cases up to 35 days in the future, with an average mean absolute percentage error of 34%, which is further improved to 21% if combined with human mobility data. Moreover, similar to the pre-vaccination study, the most influential predictor variable remains the policy of restrictions on gatherings. The modeling approach used in this work can help policymakers design control measures as variant strains threaten public health in the future.


Assuntos
COVID-19
5.
arxiv; 2021.
Preprint em Inglês | PREPRINT-ARXIV | ID: ppzbmed-2112.04106v2

RESUMO

Accurate prediction of the number of daily or weekly confirmed cases of COVID-19 is critical to the control of the pandemic. Existing mechanistic models nicely capture the disease dynamics. However, to forecast the future, they require the transmission rate to be known, limiting their prediction power. Typically, a hypothesis is made on the form of the transmission rate with respect to time. Yet the real form is too complex to be mechanistically modeled due to the unknown dynamics of many influential factors. We tackle this problem by using a hypothesis-free machine-learning algorithm to estimate the transmission rate from data on non-pharmaceutical policies, and in turn forecast the confirmed cases using a mechanistic disease model. More specifically, we build a hybrid model consisting of a mechanistic ordinary differential equation (ODE) model and a generalized boosting model (GBM). To calibrate the parameters, we develop an "inverse method" that obtains the transmission rate inversely in time from the other variables in the ODE model and then feed it into the GBM to connect with the policy data. The resulting model forecasted the number of daily confirmed cases up to 35 days in the future in the United States with an averaged mean absolute percentage error of 27%. Being partly data-driven, the method is more accurate than typical mechanistic models and meanwhile more intuitive, and possibly reliable, than purely data-based machine learning models. Moreover, it can identify the most informative predictive variables, which can be helpful in designing improved forecasters as well as informing policymakers.


Assuntos
COVID-19
6.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.10.16.20214098

RESUMO

This dataset provides information related to the outbreak of COVID-19 disease in the United States, including data from each of 3142 US counties from the beginning of the outbreak (January 2020) until September 2020. This data is collected from many public online databases and includes the daily number of COVID-19 confirmed cases and deaths, as well as 33 features that may be relevant to the pandemic dynamics: demographic, geographic, climatic, traffic, public-health, social-distancing-policy adherence, and political characteristics of each county. We anticipate many researchers will use this dataset to train models that can predict the spread of COVID-19 and to identify the key driving factors.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA